How to build and run the compiler
- Quick Start
- Get the source code
- What is
x.py
? - Create a
config.toml
- Common
x
commands - Creating a rustup toolchain
- Building targets for cross-compilation
- Other
x
commands - Remarks on disk space
The compiler is built using a tool called x.py
. You will need to
have Python installed to run it.
Quick Start
For a less in-depth quick-start of getting the compiler running, see quickstart.
Get the source code
The main repository is rust-lang/rust
. This contains the compiler,
the standard library (including core
, alloc
, test
, proc_macro
, etc),
and a bunch of tools (e.g. rustdoc
, the bootstrapping infrastructure, etc).
The very first step to work on rustc
is to clone the repository:
git clone https://github.com/rust-lang/rust.git
cd rust
Partial clone the repository
Due to the size of the repository, cloning on a slower internet connection can take a long time, and requires disk space to store the full history of every file and directory. Instead, it is possible to tell git to perform a partial clone, which will only fully retrieve the current file contents, but will automatically retrieve further file contents when you, e.g., jump back in the history. All git commands will continue to work as usual, at the price of requiring an internet connection to visit not-yet-loaded points in history.
git clone --filter='blob:none' https://github.com/rust-lang/rust.git
cd rust
NOTE: This link describes this type of checkout in more detail, and also compares it to other modes, such as shallow cloning.
Shallow clone the repository
An older alternative to partial clones is to use shallow clone the repository instead.
To do so, you can use the --depth N
option with the git clone
command.
This instructs git
to perform a "shallow clone", cloning the repository but truncating it to
the last N
commits.
Passing --depth 1
tells git
to clone the repository but truncate the history to the latest
commit that is on the master
branch, which is usually fine for browsing the source code or
building the compiler.
git clone --depth 1 https://github.com/rust-lang/rust.git
cd rust
NOTE: A shallow clone limits which
git
commands can be run. If you intend to work on and contribute to the compiler, it is generally recommended to fully clone the repository as shown above, or to perform a partial clone instead.For example,
git bisect
andgit blame
require access to the commit history, so they don't work if the repository was cloned with--depth 1
.
What is x.py
?
x.py
is the build tool for the rust
repository. It can build docs, run tests, and compile the
compiler and standard library.
This chapter focuses on the basics to be productive, but
if you want to learn more about x.py
, read this chapter.
Also, using x
rather than x.py
is recommended as:
./x
is the most likely to work on every system (on Unix it runs the shell script that does python version detection, on Windows it will probably run the powershell script - certainly less likely to break than./x.py
which often just opens the file in an editor).1
(You can find the platform related scripts around the x.py
, like x.ps1
)
Notice that this is not absolute. For instance, using Nushell in VSCode on Win10,
typing x
or ./x
still opens x.py
in an editor rather than invoking the program. :)
In the rest of this guide, we use x
rather than x.py
directly. The following
command:
./x check
could be replaced by:
./x.py check
Running x.py
The x.py
command can be run directly on most Unix systems in the following format:
./x <subcommand> [flags]
This is how the documentation and examples assume you are running x.py
.
Some alternative ways are:
# On a Unix shell if you don't have the necessary `python3` command
./x <subcommand> [flags]
# In Windows Powershell (if powershell is configured to run scripts)
./x <subcommand> [flags]
./x.ps1 <subcommand> [flags]
# On the Windows Command Prompt (if .py files are configured to run Python)
x.py <subcommand> [flags]
# You can also run Python yourself, e.g.:
python x.py <subcommand> [flags]
On Windows, the Powershell commands may give you an error that looks like this:
PS C:\Users\vboxuser\rust> ./x
./x : File C:\Users\vboxuser\rust\x.ps1 cannot be loaded because running scripts is disabled on this system. For more
information, see about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170.
At line:1 char:1
+ ./x
+ ~~~
+ CategoryInfo : SecurityError: (:) [], PSSecurityException
+ FullyQualifiedErrorId : UnauthorizedAccess
You can avoid this error by allowing powershell to run local scripts:
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
Running x.py
slightly more conveniently
There is a binary that wraps x.py
called x
in src/tools/x
. All it does is
run x.py
, but it can be installed system-wide and run from any subdirectory
of a checkout. It also looks up the appropriate version of python
to use.
You can install it with cargo install --path src/tools/x
.
To clarify that this is another global installed binary util, which is
similar to the one declared in section What is x.py
, but
it works as an independent process to execute the x.py
rather than calling the
shell to run the platform related scripts.
Create a config.toml
To start, run ./x setup
and select the compiler
defaults. This will do some initialization
and create a config.toml
for you with reasonable defaults. If you use a different default (which
you'll likely want to do if you want to contribute to an area of rust other than the compiler, such
as rustdoc), make sure to read information about that default (located in src/bootstrap/defaults
)
as the build process may be different for other defaults.
Alternatively, you can write config.toml
by hand. See config.example.toml
for all the available
settings and explanations of them. See src/bootstrap/defaults
for common settings to change.
If you have already built rustc
and you change settings related to LLVM, then you may have to
execute rm -rf build
for subsequent configuration changes to take effect. Note that ./x clean
will not cause a rebuild of LLVM.
Common x
commands
Here are the basic invocations of the x
commands most commonly used when
working on rustc
, std
, rustdoc
, and other tools.
Command | When to use it |
---|---|
./x check | Quick check to see if most things compile; rust-analyzer can run this automatically for you |
./x build | Builds rustc , std , and rustdoc |
./x test | Runs all tests |
./x fmt | Formats all code |
As written, these commands are reasonable starting points. However, there are
additional options and arguments for each of them that are worth learning for
serious development work. In particular, ./x build
and ./x test
provide many ways to compile or test a subset of the code, which can save a lot
of time.
Also, note that x
supports all kinds of path suffixes for compiler
, library
,
and src/tools
directories. So, you can simply run x test tidy
instead of
x test src/tools/tidy
. Or, x build std
instead of x build library/std
.
See the chapters on testing and rustdoc for more details.
Building the compiler
Note that building will require a relatively large amount of storage space. You may want to have upwards of 10 or 15 gigabytes available to build the compiler.
Once you've created a config.toml
, you are now ready to run
x
. There are a lot of options here, but let's start with what is
probably the best "go to" command for building a local compiler:
./x build library
This may look like it only builds the standard library, but that is not the case. What this command does is the following:
- Build
std
using the stage0 compiler - Build
rustc
using the stage0 compiler- This produces the stage1 compiler
- Build
std
using the stage1 compiler
This final product (stage1 compiler + libs built using that compiler)
is what you need to build other Rust programs (unless you use #![no_std]
or
#![no_core]
).
You will probably find that building the stage1 std
is a bottleneck for you,
but fear not, there is a (hacky) workaround...
see the section on avoiding rebuilds for std.
Sometimes you don't need a full build. When doing some kind of
"type-based refactoring", like renaming a method, or changing the
signature of some function, you can use ./x check
instead for a much faster build.
Note that this whole command just gives you a subset of the full rustc
build. The full rustc
build (what you get with ./x build --stage 2 compiler/rustc
) has quite a few more steps:
- Build
rustc
with the stage1 compiler.- The resulting compiler here is called the "stage2" compiler.
- Build
std
with stage2 compiler. - Build
librustdoc
and a bunch of other things with the stage2 compiler.
You almost never need to do this.
Build specific components
If you are working on the standard library, you probably don't need to build the compiler unless you are planning to use a recently added nightly feature. Instead, you can just build using the bootstrap compiler.
./x build --stage 0 library
If you choose the library
profile when running x setup
, you can omit --stage 0
(it's the
default).
Creating a rustup toolchain
Once you have successfully built rustc
, you will have created a bunch
of files in your build
directory. In order to actually run the
resulting rustc
, we recommend creating rustup toolchains. The first
one will run the stage1 compiler (which we built above). The second
will execute the stage2 compiler (which we did not build, but which
you will likely need to build at some point; for example, if you want
to run the entire test suite).
rustup toolchain link stage0 build/host/stage0-sysroot # beta compiler + stage0 std
rustup toolchain link stage1 build/host/stage1
rustup toolchain link stage2 build/host/stage2
Now you can run the rustc
you built with. If you run with -vV
, you
should see a version number ending in -dev
, indicating a build from
your local environment:
$ rustc +stage1 -vV
rustc 1.48.0-dev
binary: rustc
commit-hash: unknown
commit-date: unknown
host: x86_64-unknown-linux-gnu
release: 1.48.0-dev
LLVM version: 11.0
The rustup toolchain points to the specified toolchain compiled in your build
directory,
so the rustup toolchain will be updated whenever x build
or x test
are run for
that toolchain/stage.
Note: the toolchain we've built does not include cargo
. In this case, rustup
will
fall back to using cargo
from the installed nightly
, beta
, or stable
toolchain
(in that order). If you need to use unstable cargo
flags, be sure to run
rustup install nightly
if you haven't already. See the
rustup documentation on custom toolchains.
Note: rust-analyzer and IntelliJ Rust plugin use a component called
rust-analyzer-proc-macro-srv
to work with proc macros. If you intend to use a
custom toolchain for a project (e.g. via rustup override set stage1
) you may
want to build this component:
./x build proc-macro-srv-cli
Building targets for cross-compilation
To produce a compiler that can cross-compile for other targets,
pass any number of target
flags to x build
.
For example, if your host platform is x86_64-unknown-linux-gnu
and your cross-compilation target is wasm32-wasip1
, you can build with:
./x build --target x86_64-unknown-linux-gnu,wasm32-wasip1
Note that if you want the resulting compiler to be able to build crates that
involve proc macros or build scripts, you must be sure to explicitly build target support for the
host platform (in this case, x86_64-unknown-linux-gnu
).
If you want to always build for other targets without needing to pass flags to x build
,
you can configure this in the [build]
section of your config.toml
like so:
[build]
target = ["x86_64-unknown-linux-gnu", "wasm32-wasip1"]
Note that building for some targets requires having external dependencies installed
(e.g. building musl targets requires a local copy of musl).
Any target-specific configuration (e.g. the path to a local copy of musl)
will need to be provided by your config.toml
.
Please see config.example.toml
for information on target-specific configuration keys.
For examples of the complete configuration necessary to build a target, please visit the rustc book, select any target under the "Platform Support" heading on the left, and see the section related to building a compiler for that target. For targets without a corresponding page in the rustc book, it may be useful to inspect the Dockerfiles that the Rust infrastructure itself uses to set up and configure cross-compilation.
If you have followed the directions from the prior section on creating a rustup toolchain, then once you have built your compiler you will be able to use it to cross-compile like so:
cargo +stage1 build --target wasm32-wasip1
Other x
commands
Here are a few other useful x
commands. We'll cover some of them in detail
in other sections:
- Building things:
./x build
– builds everything using the stage 1 compiler, not just up tostd
./x build --stage 2
– builds everything with the stage 2 compiler includingrustdoc
- Running tests (see the section on running tests for
more details):
./x test library/std
– runs the unit tests and integration tests fromstd
./x test tests/ui
– runs theui
test suite./x test tests/ui/const-generics
- runs all the tests in theconst-generics/
subdirectory of theui
test suite./x test tests/ui/const-generics/const-types.rs
- runs the single testconst-types.rs
from theui
test suite
Cleaning out build directories
Sometimes you need to start fresh, but this is normally not the case. If you need to run this then bootstrap is most likely not acting right and you should file a bug as to what is going wrong. If you do need to clean everything up then you only need to run one command!
./x clean
rm -rf build
works too, but then you have to rebuild LLVM, which can take
a long time even on fast computers.
Remarks on disk space
Building the compiler (especially if beyond stage 1) can require significant amounts of free disk
space, possibly around 100GB. This is compounded if you have a separate build directory for
rust-analyzer (e.g. build-rust-analyzer
). This is easy to hit with dev-desktops which have a set
disk
quota
for each user, but this also applies to local development as well. Occassionally, you may need to:
- Remove
build/
directory. - Remove
build-rust-analyzer/
directory (if you have a separate rust-analyzer build directory). - Uninstall unnecessary toolchains if you use
cargo-bisect-rustc
. You can check which toolchains are installed withrustup toolchain list
.
issue#1707