How to Build and Run the Compiler

The compiler is built using a tool called You will need to have Python installed to run it. But before we get to that, if you're going to be hacking on rustc, you'll want to tweak the configuration of the compiler. The default configuration is oriented towards running the compiler as a user, not a developer.

Get the source code

The very first step to work on rustc is to clone the repository:

git clone
cd rust

Create a config.toml

To start, copy config.toml.example to config.toml:

cp config.toml.example config.toml

Then you will want to open up the file and change the following settings (and possibly others, such as llvm.ccache):

# Enables LLVM assertions, which will check that the LLVM bitcode generated
# by the compiler is internally consistent. These are particularly helpful
# if you edit `codegen`.
assertions = true

# This will make your build more parallel; it costs a bit of runtime
# performance perhaps (less inlining) but it's worth it.
codegen-units = 0

# This enables full debuginfo and debug assertions. The line debuginfo is also
# enabled by `debuginfo-level = 1`. Full debuginfo is also enabled by
# `debuginfo-level = 2`. Debug assertions can also be enabled with
# `debug-assertions = true`. Note that `debug = true` will make your build
# slower, so you may want to try individually enabling debuginfo and assertions
# or enable only line debuginfo which is basically free.
debug = true

If you have already built rustc, then you may have to execute rm -rf build for subsequent configuration changes to take effect. Note that ./ clean will not cause a rebuild of LLVM, so if your configuration change affects LLVM, you will need to manually rm -rf build/ before rebuilding.

What is is the script used to orchestrate the tooling in the rustc repository. It is the script that can build docs, run tests, and compile rustc. It is the now preferred way to build rustc and it replaces the old makefiles from before. Below are the different ways to utilize in order to effectively deal with the repo for various common tasks.

This chapter focuses on the basics to be productive, but if you want to learn more about, read its here.


One thing to keep in mind is that rustc is a bootstrapping compiler. That is, since rustc is written in Rust, we need to use an older version of the compiler to compile the newer version. In particular, the newer version of the compiler and some of the artifacts needed to build it, such as libstd and other tooling, may use some unstable features internally, requiring a specific version which understands these unstable features.

The result is that compiling rustc is done in stages:

  • Stage 0: the stage0 compiler is usually (you can configure to use something else) the current beta rustc compiler and its associated dynamic libraries (which will download for you). This stage0 compiler is then used only to compile rustbuild, std, and rustc. When compiling rustc, this stage0 compiler uses the freshly compiled std. There are two concepts at play here: a compiler (with its set of dependencies) and its 'target' or 'object' libraries (std and rustc). Both are staged, but in a staggered manner.
  • Stage 1: the code in your clone (for new version) is then compiled with the stage0 compiler to produce the stage1 compiler. However, it was built with an older compiler (stage0), so to optimize the stage1 compiler we go to next the stage.
    • In theory, the stage1 compiler is functionally identical to the stage2 compiler, but in practice there are subtle differences. In particular, the stage1 compiler itself was built by stage0 and hence not by the source in your working directory: this means that the symbol names used in the compiler source may not match the symbol names that would have been made by the stage1 compiler. This is important when using dynamic linking and the lack of ABI compatibility between versions. This primarily manifests when tests try to link with any of the rustc_* crates or use the (now deprecated) plugin infrastructure. These tests are marked with ignore-stage1.
  • Stage 2: we rebuild our stage1 compiler with itself to produce the stage2 compiler (i.e. it builds itself) to have all the latest optimizations. (By default, we copy the stage1 libraries for use by the stage2 compiler, since they ought to be identical.)
  • (Optional) Stage 3: to sanity check our new compiler, we can build the libraries with the stage2 compiler. The result ought to be identical to before, unless something has broken.

To read more about the bootstrap process, read this chapter.

Building the Compiler

To build a compiler, run ./ build. This will do the whole bootstrapping process described above, producing a usable compiler toolchain from the source code you have checked out. This takes a long time, so it is not usually what you want to actually run (more on this later).

Note that building will require a relatively large amount of storage space. You may want to have upwards of 10 or 15 gigabytes available to build the compiler.

There are many flags you can pass to the build command of that can be beneficial to cutting down compile times or fitting other things you might need to change. They are:

    -v, --verbose       use verbose output (-vv for very verbose)
    -i, --incremental   use incremental compilation
        --config FILE   TOML configuration file for build
        --build BUILD   build target of the stage0 compiler
        --host HOST     host targets to build
        --target TARGET target targets to build
        --on-fail CMD   command to run on failure
        --stage N       stage to build
        --keep-stage N  stage to keep without recompiling
        --src DIR       path to the root of the rust checkout
    -j, --jobs JOBS     number of jobs to run in parallel
    -h, --help          print this help message

For hacking, often building the stage 1 compiler is enough, but for final testing and release, the stage 2 compiler is used.

./ check is really fast to build the rust compiler. It is, in particular, very useful when you're doing some kind of "type-based refactoring", like renaming a method, or changing the signature of some function.

Once you've created a config.toml, you are now ready to run There are a lot of options here, but let's start with what is probably the best "go to" command for building a local rust:

./ build -i --stage 1 src/libstd

This may look like it only builds libstd, but that is not the case. What this command does is the following:

  • Build libstd using the stage0 compiler (using incremental)
  • Build librustc using the stage0 compiler (using incremental)
    • This produces the stage1 compiler
  • Build libstd using the stage1 compiler (cannot use incremental)

This final product (stage1 compiler + libs built using that compiler) is what you need to build other rust programs (unless you use #![no_std] or #![no_core]).

The command includes the -i switch which enables incremental compilation. This will be used to speed up the first two steps of the process: in particular, if you make a small change, we ought to be able to use your old results to make producing the stage1 compiler faster.

Unfortunately, incremental cannot be used to speed up making the stage1 libraries. This is because incremental only works when you run the same compiler twice in a row. In this case, we are building a new stage1 compiler every time. Therefore, the old incremental results may not apply. As a result, you will probably find that building the stage1 libstd is a bottleneck for you -- but fear not, there is a (hacky) workaround. See the section on "recommended workflows" below.

Note that this whole command just gives you a subset of the full rustc build. The full rustc build (what you get if you just say ./ build) has quite a few more steps:

  • Build librustc and rustc with the stage1 compiler.
    • The resulting compiler here is called the "stage2" compiler.
  • Build libstd with stage2 compiler.
  • Build librustdoc and a bunch of other things with the stage2 compiler.

Build specific components

Build only the libcore library

./ build src/libcore

Build the libcore and libproc_macro library only

./ build src/libcore src/libproc_macro

Build only libcore up to Stage 1

./ build src/libcore --stage 1

Sometimes you might just want to test if the part you’re working on can compile. Using these commands you can test that it compiles before doing a bigger build to make sure it works with the compiler. As shown before you can also pass flags at the end such as --stage.

Creating a rustup toolchain

Once you have successfully built rustc, you will have created a bunch of files in your build directory. In order to actually run the resulting rustc, we recommend creating rustup toolchains. The first one will run the stage1 compiler (which we built above). The second will execute the stage2 compiler (which we did not build, but which you will likely need to build at some point; for example, if you want to run the entire test suite).

rustup toolchain link stage1 build/<host-triple>/stage1
rustup toolchain link stage2 build/<host-triple>/stage2

The <host-triple> would typically be one of the following:

  • Linux: x86_64-unknown-linux-gnu
  • Mac: x86_64-apple-darwin
  • Windows: x86_64-pc-windows-msvc

Now you can run the rustc you built with. If you run with -vV, you should see a version number ending in -dev, indicating a build from your local environment:

$ rustc +stage1 -vV
rustc 1.25.0-dev
binary: rustc
commit-hash: unknown
commit-date: unknown
host: x86_64-unknown-linux-gnu
release: 1.25.0-dev
LLVM version: 4.0

Other commands

Here are a few other useful commands. We'll cover some of them in detail in other sections:

  • Building things:
    • ./ build --stage 1 – builds everything using the stage 1 compiler, not just up to libstd
    • ./ build – builds the stage2 compiler
  • Running tests (see the section on running tests for more details):
    • ./ test --stage 1 src/libstd – runs the #[test] tests from libstd
    • ./ test --stage 1 src/test/ui – runs the ui test suite
    • ./ test --stage 1 src/test/ui/const-generics - runs all the tests in the const-generics/ subdirectory of the ui test suite
    • ./ test --stage 1 src/test/ui/const-generics/ - runs the single test from the ui test suite

Cleaning out build directories

Sometimes you need to start fresh, but this is normally not the case. If you need to run this then rustbuild is most likely not acting right and you should file a bug as to what is going wrong. If you do need to clean everything up then you only need to run one command!

./ clean

rm -rf build works too, but then you have to rebuild LLVM.