Debugging the compiler
- Configuring the compiler
- Suppressing the ICE file
- Getting a backtrace
-Z
flags- Getting logging output
- Narrowing (Bisecting) Regressions
- Downloading Artifacts from Rust's CI
#[rustc_*]
TEST attributes- Configuring CodeLLDB for debugging
rustc
This chapter contains a few tips to debug the compiler. These tips aim to be useful no matter what you are working on. Some of the other chapters have advice about specific parts of the compiler (e.g. the Queries Debugging and Testing chapter or the LLVM Debugging chapter).
Configuring the compiler
By default, rustc is built without most debug information. To enable debug info,
set debug = true
in your config.toml.
Setting debug = true
turns on many different debug options (e.g., debug-assertions
,
debug-logging
, etc.) which can be individually tweaked if you want to, but many people
simply set debug = true
.
If you want to use GDB to debug rustc, please set config.toml
with options:
[rust]
debug = true
debuginfo-level = 2
NOTE: This will use a lot of disk space (upwards of 35GB), and will take a lot more compile time. With
debuginfo-level = 1
(the default whendebug = true
), you will be able to track the execution path, but will lose the symbol information for debugging.
The default configuration will enable symbol-mangling-version
v0.
This requires at least GDB v10.2,
otherwise you need to disable new symbol-mangling-version in config.toml
.
[rust]
new-symbol-mangling = false
See the comments in
config.example.toml
for more info.
You will need to rebuild the compiler after changing any configuration option.
Suppressing the ICE file
By default, if rustc encounters an Internal Compiler Error (ICE) it will dump the ICE contents to an
ICE file within the current working directory named rustc-ice-<timestamp>-<pid>.txt
. If this is
not desirable, you can prevent the ICE file from being created with RUSTC_ICE=0
.
Getting a backtrace
When you have an ICE (panic in the compiler), you can set
RUST_BACKTRACE=1
to get the stack trace of the panic!
like in
normal Rust programs. IIRC backtraces don't work on MinGW,
sorry. If you have trouble or the backtraces are full of unknown
,
you might want to find some way to use Linux, Mac, or MSVC on Windows.
In the default configuration (without debug
set to true
), you don't have line numbers
enabled, so the backtrace looks like this:
stack backtrace:
0: std::sys::imp::backtrace::tracing::imp::unwind_backtrace
1: std::sys_common::backtrace::_print
2: std::panicking::default_hook::{{closure}}
3: std::panicking::default_hook
4: std::panicking::rust_panic_with_hook
5: std::panicking::begin_panic
(~~~~ LINES REMOVED BY ME FOR BREVITY ~~~~)
32: rustc_typeck::check_crate
33: <std::thread::local::LocalKey<T>>::with
34: <std::thread::local::LocalKey<T>>::with
35: rustc::ty::context::TyCtxt::create_and_enter
36: rustc_driver::driver::compile_input
37: rustc_driver::run_compiler
If you set debug = true
, you will get line numbers for the stack trace.
Then the backtrace will look like this:
stack backtrace:
(~~~~ LINES REMOVED BY ME FOR BREVITY ~~~~)
at /home/user/rust/compiler/rustc_typeck/src/check/cast.rs:110
7: rustc_typeck::check::cast::CastCheck::check
at /home/user/rust/compiler/rustc_typeck/src/check/cast.rs:572
at /home/user/rust/compiler/rustc_typeck/src/check/cast.rs:460
at /home/user/rust/compiler/rustc_typeck/src/check/cast.rs:370
(~~~~ LINES REMOVED BY ME FOR BREVITY ~~~~)
33: rustc_driver::driver::compile_input
at /home/user/rust/compiler/rustc_driver/src/driver.rs:1010
at /home/user/rust/compiler/rustc_driver/src/driver.rs:212
34: rustc_driver::run_compiler
at /home/user/rust/compiler/rustc_driver/src/lib.rs:253
-Z
flags
The compiler has a bunch of -Z *
flags. These are unstable flags that are only
enabled on nightly. Many of them are useful for debugging. To get a full listing
of -Z
flags, use -Z help
.
One useful flag is -Z verbose-internals
, which generally enables printing more
info that could be useful for debugging.
Right below you can find elaborate explainers on a selected few.
Getting a backtrace for errors
If you want to get a backtrace to the point where the compiler emits an
error message, you can pass the -Z treat-err-as-bug=n
, which will make
the compiler panic on the nth
error. If you leave off =n
, the compiler will
assume 1
for n
and thus panic on the first error it encounters.
For example:
$ cat error.rs
fn main() { 1 + (); }
$ rustc +stage1 error.rs
error[E0277]: cannot add `()` to `{integer}`
--> error.rs:2:7
|
2 | 1 + ();
| ^ no implementation for `{integer} + ()`
|
= help: the trait `Add<()>` is not implemented for `{integer}`
error: aborting due to previous error
Now, where does the error above come from?
$ RUST_BACKTRACE=1 rustc +stage1 error.rs -Z treat-err-as-bug
error[E0277]: the trait bound `{integer}: std::ops::Add<()>` is not satisfied
--> error.rs:2:7
|
2 | 1 + ();
| ^ no implementation for `{integer} + ()`
|
= help: the trait `std::ops::Add<()>` is not implemented for `{integer}`
error: internal compiler error: unexpected panic
note: the compiler unexpectedly panicked. this is a bug.
note: we would appreciate a bug report: https://github.com/rust-lang/rust/blob/master/CONTRIBUTING.md#bug-reports
note: rustc 1.24.0-dev running on x86_64-unknown-linux-gnu
note: run with `RUST_BACKTRACE=1` for a backtrace
thread 'rustc' panicked at 'encountered error with `-Z treat_err_as_bug',
/home/user/rust/compiler/rustc_errors/src/lib.rs:411:12
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose
backtrace.
stack backtrace:
(~~~ IRRELEVANT PART OF BACKTRACE REMOVED BY ME ~~~)
7: rustc::traits::error_reporting::<impl rustc::infer::InferCtxt<'a, 'tcx>>
::report_selection_error
at /home/user/rust/compiler/rustc_middle/src/traits/error_reporting.rs:823
8: rustc::traits::error_reporting::<impl rustc::infer::InferCtxt<'a, 'tcx>>
::report_fulfillment_errors
at /home/user/rust/compiler/rustc_middle/src/traits/error_reporting.rs:160
at /home/user/rust/compiler/rustc_middle/src/traits/error_reporting.rs:112
9: rustc_typeck::check::FnCtxt::select_obligations_where_possible
at /home/user/rust/compiler/rustc_typeck/src/check/mod.rs:2192
(~~~ IRRELEVANT PART OF BACKTRACE REMOVED BY ME ~~~)
36: rustc_driver::run_compiler
at /home/user/rust/compiler/rustc_driver/src/lib.rs:253
Cool, now I have a backtrace for the error!
Debugging delayed bugs
The -Z eagerly-emit-delayed-bugs
option makes it easy to debug delayed bugs.
It turns them into normal errors, i.e. makes them visible. This can be used in
combination with -Z treat-err-as-bug
to stop at a particular delayed bug and
get a backtrace.
Getting the error creation location
-Z track-diagnostics
can help figure out where errors are emitted. It uses #[track_caller]
for this and prints its location alongside the error:
$ RUST_BACKTRACE=1 rustc +stage1 error.rs -Z track-diagnostics
error[E0277]: cannot add `()` to `{integer}`
--> src\error.rs:2:7
|
2 | 1 + ();
| ^ no implementation for `{integer} + ()`
-Ztrack-diagnostics: created at compiler/rustc_trait_selection/src/traits/error_reporting/mod.rs:638:39
|
= help: the trait `Add<()>` is not implemented for `{integer}`
= help: the following other types implement trait `Add<Rhs>`:
<&'a f32 as Add<f32>>
<&'a f64 as Add<f64>>
<&'a i128 as Add<i128>>
<&'a i16 as Add<i16>>
<&'a i32 as Add<i32>>
<&'a i64 as Add<i64>>
<&'a i8 as Add<i8>>
<&'a isize as Add<isize>>
and 48 others
For more information about this error, try `rustc --explain E0277`.
This is similar but different to -Z treat-err-as-bug
:
- it will print the locations for all errors emitted
- it does not require a compiler built with debug symbols
- you don't have to read through a big stack trace.
Getting logging output
The compiler uses the tracing
crate for logging.
For details see the guide section on tracing
Narrowing (Bisecting) Regressions
The cargo-bisect-rustc tool can be used as a quick and easy way to
find exactly which PR caused a change in rustc
behavior. It automatically
downloads rustc
PR artifacts and tests them against a project you provide
until it finds the regression. You can then look at the PR to get more context
on why it was changed. See this tutorial on how to use
it.
Downloading Artifacts from Rust's CI
The rustup-toolchain-install-master tool by kennytm can be used to
download the artifacts produced by Rust's CI for a specific SHA1 -- this
basically corresponds to the successful landing of some PR -- and then sets
them up for your local use. This also works for artifacts produced by @bors try
. This is helpful when you want to examine the resulting build of a PR
without doing the build yourself.
#[rustc_*]
TEST attributes
The compiler defines a whole lot of internal (perma-unstable) attributes some of which are useful
for debugging by dumping extra compiler-internal information. These are prefixed with rustc_
and
are gated behind the internal feature rustc_attrs
(enabled via e.g. #![feature(rustc_attrs)]
).
For a complete and up to date list, see builtin_attrs
. More specifically, the ones marked TEST
.
Here are some notable ones:
Attribute | Description |
---|---|
rustc_def_path | Dumps the def_path_str of an item. |
rustc_dump_def_parents | Dumps the chain of DefId parents of certain definitions. |
rustc_dump_item_bounds | Dumps the item_bounds of an item. |
rustc_dump_predicates | Dumps the predicates_of an item. |
rustc_dump_vtable | |
rustc_hidden_type_of_opaques | Dumps the hidden type of each opaque types in the crate. |
rustc_layout | See this section. |
rustc_object_lifetime_default | Dumps the object lifetime defaults of an item. |
rustc_outlives | Dumps implied bounds of an item. More precisely, the inferred_outlives_of an item. |
rustc_regions | Dumps NLL closure region requirements. |
rustc_symbol_name | Dumps the mangled & demangled symbol_name of an item. |
rustc_variances | Dumps the variances of an item. |
Right below you can find elaborate explainers on a selected few.
Formatting Graphviz output (.dot files)
Some compiler options for debugging specific features yield graphviz graphs -
e.g. the #[rustc_mir(borrowck_graphviz_postflow="suffix.dot")]
attribute
dumps various borrow-checker dataflow graphs.
These all produce .dot
files. To view these files, install graphviz (e.g.
apt-get install graphviz
) and then run the following commands:
$ dot -T pdf maybe_init_suffix.dot > maybe_init_suffix.pdf
$ firefox maybe_init_suffix.pdf # Or your favorite pdf viewer
Debugging type layouts
The internal attribute #[rustc_layout]
can be used to dump the Layout
of
the type it is attached to. For example:
#![allow(unused)] #![feature(rustc_attrs)] fn main() { #[rustc_layout(debug)] type T<'a> = &'a u32; }
Will emit the following:
error: layout_of(&'a u32) = Layout {
fields: Primitive,
variants: Single {
index: 0,
},
abi: Scalar(
Scalar {
value: Pointer,
valid_range: 1..=18446744073709551615,
},
),
largest_niche: Some(
Niche {
offset: Size {
raw: 0,
},
scalar: Scalar {
value: Pointer,
valid_range: 1..=18446744073709551615,
},
},
),
align: AbiAndPrefAlign {
abi: Align {
pow2: 3,
},
pref: Align {
pow2: 3,
},
},
size: Size {
raw: 8,
},
}
--> src/lib.rs:4:1
|
4 | type T<'a> = &'a u32;
| ^^^^^^^^^^^^^^^^^^^^^
error: aborting due to previous error
Configuring CodeLLDB for debugging rustc
If you are using VSCode, and have edited your config.toml
to request debugging
level 1 or 2 for the parts of the code you're interested in, then you should be
able to use the CodeLLDB extension in VSCode to debug it.
Here is a sample launch.json
file, being used to run a stage 1 compiler direct
from the directory where it is built (does not have to be "installed"):
// .vscode/launch.json
{
"version": "0.2.0",
"configurations": [
{
"type": "lldb",
"request": "launch",
"name": "Launch",
"args": [], // array of string command-line arguments to pass to compiler
"program": "${workspaceFolder}/build/host/stage1/bin/rustc",
"windows": { // applicable if using windows
"program": "${workspaceFolder}/build/host/stage1/bin/rustc.exe"
},
"cwd": "${workspaceFolder}", // current working directory at program start
"stopOnEntry": false,
"sourceLanguages": ["rust"]
}
]
}