Compiletest directives
Directives are special comments that tell compiletest how to build and interpret
a test. They must appear before the Rust source in the test. They may also
appear in rmake.rs
or legacy Makefiles for run-make
tests.
They are normally put after the short comment that explains the point of this
test. Compiletest test suites use //@
to signal that a comment is a directive.
For example, this test uses the //@ compile-flags
command to specify a custom
flag to give to rustc when the test is compiled:
// Test the behavior of `0 - 1` when overflow checks are disabled.
//@ compile-flags: -C overflow-checks=off
fn main() {
let x = 0 - 1;
...
}
Directives can be standalone (like //@ run-pass
) or take a value (like //@ compile-flags: -C overflow-checks=off
).
Directives are written one directive per line: you cannot write multiple
directives on the same line. For example, if you write //@ only-x86 only-windows
then only-windows
is interpreted as a comment, not a separate
directive.
Listing of compiletest directives
The following is a list of compiletest directives. Directives are linked to
sections that describe the command in more detail if available. This list may
not be exhaustive. Directives can generally be found by browsing the
TestProps
structure found in header.rs
from the compiletest source.
Assembly
Directive | Explanation | Supported test suites | Possible values |
---|---|---|---|
assembly-output | Assembly output kind to check | assembly | emit-asm , bpf-linker , ptx-linker |
Auxiliary builds
Directive | Explanation | Supported test suites | Possible values |
---|---|---|---|
aux-bin | Build a aux binary, made available in auxiliary/bin relative to test directory | All except run-make | Path to auxiliary .rs file |
aux-build | Build a separate crate from the named source file | All except run-make | Path to auxiliary .rs file |
aux-crate | Like aux-build but makes available as extern prelude | All except run-make | <extern_prelude_name>=<path/to/aux/file.rs> |
aux-codegen-backend | Similar to aux-build but pass the compiled dylib to -Zcodegen-backend when building the main file | ui-fulldeps | Path to codegen backend file |
proc-macro | Similar to aux-build , but for aux forces host and don't use -Cprefer-dynamic 1. | All except run-make | Path to auxiliary proc-macro .rs file |
build_aux_docs | Build docs for auxiliaries as well | All except run-make | N/A |
please see the Auxiliary proc-macro section in the compiletest chapter for specifics.
Controlling outcome expectations
See Controlling pass/fail expectations.
Directive | Explanation | Supported test suites | Possible values |
---|---|---|---|
check-pass | Building (no codegen) should pass | ui , crashes , incremental | N/A |
check-fail | Building (no codegen) should fail | ui , crashes | N/A |
build-pass | Building should pass | ui , crashes , codegen , incremental | N/A |
build-fail | Building should fail | ui , crashes | N/A |
run-pass | Running the test binary should pass | ui , crashes , incremental | N/A |
run-fail | Running the test binary should fail | ui , crashes | N/A |
ignore-pass | Ignore --pass flag | ui , crashes , codegen , incremental | N/A |
dont-check-failure-status | Don't check exact failure status (i.e. 1 ) | ui , incremental | N/A |
failure-status | Check | ui , crashes | Any u16 |
should-ice | Check failure status is 101 | coverage , incremental | N/A |
should-fail | Compiletest self-test | All | N/A |
Controlling output snapshots and normalizations
See Normalization, Output comparison and Rustfix tests for more details.
Directive | Explanation | Supported test suites | Possible values |
---|---|---|---|
check-run-results | Check run test binary run-{pass,fail} output snapshot | ui , crashes , incremental if run-pass | N/A |
error-pattern | Check that output contains a regex pattern | ui , crashes , incremental if run-pass | Regex |
check-stdout | Check stdout against error-pattern s from running test binary2 | ui , crashes , incremental | N/A |
normalize-stderr-32bit | Normalize actual stderr (for 32-bit platforms) with a rule "<raw>" -> "<normalized>" before comparing against snapshot | ui , incremental | "<RAW>" -> "<NORMALIZED>" , <RAW> /<NORMALIZED> is regex capture and replace syntax |
normalize-stderr-64bit | Normalize actual stderr (for 64-bit platforms) with a rule "<raw>" -> "<normalized>" before comparing against snapshot | ui , incremental | "<RAW>" -> "<NORMALIZED>" , <RAW> /<NORMALIZED> is regex capture and replace syntax |
normalize-stderr | Normalize actual stderr with a rule "<raw>" -> "<normalized>" before comparing against snapshot | ui , incremental | "<RAW>" -> "<NORMALIZED>" , <RAW> /<NORMALIZED> is regex capture and replace syntax |
normalize-stdout | Normalize actual stdout with a rule "<raw>" -> "<normalized>" before comparing against snapshot | ui , incremental | "<RAW>" -> "<NORMALIZED>" , <RAW> /<NORMALIZED> is regex capture and replace syntax |
dont-check-compiler-stderr | Don't check actual compiler stderr vs stderr snapshot | ui | N/A |
dont-check-compiler-stdout | Don't check actual compiler stdout vs stdout snapshot | ui | N/A |
run-rustfix | Apply all suggestions via rustfix , snapshot fixed output, and check fixed output builds | ui | N/A |
rustfix-only-machine-applicable | run-rustfix but only machine-applicable suggestions | ui | N/A |
exec-env | Env var to set when executing a test | ui , crashes | <KEY>=<VALUE> |
unset-exec-env | Env var to unset when executing a test | ui , crashes | Any env var name |
stderr-per-bitwidth | Generate a stderr snapshot for each bitwidth | ui | N/A |
forbid-output | A pattern which must not appear in stderr/cfail output | ui , incremental | Regex pattern |
run-flags | Flags passed to the test executable | ui | Arbitrary flags |
known-bug | No error annotation needed due to known bug | ui , crashes , incremental | Issue number #123456 |
presently this has a weird quirk
where the test binary's stdout and stderr gets concatenated and then
error-pattern
s are matched on this combined output, which is ??? slightly
questionable to say the least.
Controlling when tests are run
These directives are used to ignore the test in some situations, which means the test won't be compiled or run.
ignore-X
whereX
is a target detail or stage will ignore the test accordingly (see below)only-X
is likeignore-X
, but will only run the test on that target or stageignore-test
always ignores the test. This can be used to temporarily disable a test if it is currently not working, but you want to keep it in tree to re-enable it later.
Some examples of X
in ignore-X
or only-X
:
- A full target triple:
aarch64-apple-ios
- Architecture:
aarch64
,arm
,mips
,wasm32
,x86_64
,x86
, ... - OS:
android
,emscripten
,freebsd
,ios
,linux
,macos
,windows
, ... - Environment (fourth word of the target triple):
gnu
,msvc
,musl
- WASM:
wasm32-bare
matcheswasm32-unknown-unknown
.emscripten
also matches that target as well as the emscripten targets. - Pointer width:
32bit
,64bit
- Endianness:
endian-big
- Stage:
stage0
,stage1
,stage2
- Channel:
stable
,beta
- When cross compiling:
cross-compile
- When remote testing is used:
remote
- When particular debuggers are being tested:
cdb
,gdb
,lldb
- When particular debugger versions are matched:
ignore-gdb-version
- Specific compare modes:
compare-mode-polonius
,compare-mode-chalk
,compare-mode-split-dwarf
,compare-mode-split-dwarf-single
- The two different test modes used by coverage tests:
ignore-coverage-map
,ignore-coverage-run
The following directives will check rustc build settings and target settings:
needs-asm-support
— ignores if it is running on a target that doesn't have stable support forasm!
needs-profiler-runtime
— ignores the test if the profiler runtime was not enabled for the target (build.profiler = true
in rustc'sconfig.toml
)needs-sanitizer-support
— ignores if the sanitizer support was not enabled for the target (sanitizers = true
in rustc'sconfig.toml
)needs-sanitizer-{address,hwaddress,leak,memory,thread}
— ignores if the corresponding sanitizer is not enabled for the target (AddressSanitizer, hardware-assisted AddressSanitizer, LeakSanitizer, MemorySanitizer or ThreadSanitizer respectively)needs-run-enabled
— ignores if it is a test that gets executed, and running has been disabled. Running tests can be disabled with thex test --run=never
flag, or running on fuchsia.needs-unwind
— ignores if the target does not support unwindingneeds-rust-lld
— ignores if the rust lld support is not enabled (rust.lld = true
inconfig.toml
)needs-threads
— ignores if the target does not have threading supportneeds-symlink
— ignores if the target does not support symlinks. This can be the case on Windows if the developer did not enable privileged symlink permissions.ignore-std-debug-assertions
— ignores if std was built with debug assertions.needs-std-debug-assertions
— ignores if std was not built with debug assertions.ignore-rustc-debug-assertions
— ignores if rustc was built with debug assertions.needs-rustc-debug-assertions
— ignores if rustc was not built with debug assertions.needs-target-has-atomic
— ignores if target does not have support for all specified atomic widths, e.g. the test with//@ needs-target-has-atomic: 8, 16, ptr
will only run if it supports the comma-separated list of atomic widths.
The following directives will check LLVM support:
no-system-llvm
— ignores if the system llvm is usedexact-llvm-major-version: 19
— ignores if the llvm major version does not match the specified llvm major version.min-llvm-version: 13.0
— ignored if the LLVM version is less than the given valuemin-system-llvm-version: 12.0
— ignored if using a system LLVM and its version is less than the given valuemax-llvm-major-version: 19
— ignored if the LLVM major version is higher than the given major versionignore-llvm-version: 9.0
— ignores a specific LLVM versionignore-llvm-version: 7.0 - 9.9.9
— ignores LLVM versions in a range (inclusive)needs-llvm-components: powerpc
— ignores if the specific LLVM component was not built. Note: The test will fail on CI (whenCOMPILETEST_REQUIRE_ALL_LLVM_COMPONENTS
is set) if the component does not exist.needs-forced-clang-based-tests
— test is ignored unless the environment variableRUSTBUILD_FORCE_CLANG_BASED_TESTS
is set, which enables building clang alongside LLVM- This is only set in two CI jobs (
x86_64-gnu-debug
andaarch64-gnu-debug
), which only runs a subset ofrun-make
tests. Other tests with this directive will not run at all, which is usually not what you want. - Notably, the
aarch64-gnu-debug
CI job currently only runsrun-make
tests which additionally containclang
in their test name.
- This is only set in two CI jobs (
See also Debuginfo tests for directives for ignoring debuggers.
Affecting how tests are built
Directive | Explanation | Supported test suites | Possible values |
---|---|---|---|
compile-flags | Flags passed to rustc when building the test or aux file | All except for run-make | Any valid rustc flags, e.g. -Awarnings -Dfoo . Cannot be -Cincremental . |
edition | Alias for compile-flags: --edition=xxx | All except for run-make | Any valid --edition value |
rustc-env | Env var to set when running rustc | All except for run-make | <KEY>=<VALUE> |
unset-rustc-env | Env var to unset when running rustc | All except for run-make | Any env var name |
incremental | Proper incremental support for tests outside of incremental test suite | ui , crashes | N/A |
no-prefer-dynamic | Don't use -C prefer-dynamic , don't build as a dylib via a --crate-type=dylib preset flag | ui , crashes | N/A |
Consider writing the test as a proper incremental test instead.
Rustdoc
Directive | Explanation | Supported test suites | Possible values |
---|---|---|---|
doc-flags | Flags passed to rustdoc when building the test or aux file | rustdoc , js-doc-test , rustdoc-json | Any valid rustdoc flags |
Pretty printing
See Pretty-printer.
Misc directives
no-auto-check-cfg
— disable auto check-cfg (only for--check-cfg
tests)revisions
— compile multiple timesunused-revision-names
- suppress tidy checks for mentioning unknown revision names -forbid-output
— incremental cfail rejects output patternshould-ice
— incremental cfail should ICEreference
— an annotation linking to a rule in the reference
Tool-specific directives
The following directives affect how certain command-line tools are invoked, in test suites that use those tools:
filecheck-flags
adds extra flags when running LLVM'sFileCheck
tool.- Used by codegen tests, assembly tests, and MIR-opt tests.
llvm-cov-flags
adds extra flags when running LLVM'sllvm-cov
tool.- Used by coverage tests in
coverage-run
mode.
- Used by coverage tests in
Substitutions
Directive values support substituting a few variables which will be replaced with their corresponding value. For example, if you need to pass a compiler flag with a path to a specific file, something like the following could work:
//@ compile-flags: --remap-path-prefix={{src-base}}=/the/src
Where the sentinel {{src-base}}
will be replaced with the appropriate path
described below:
{{cwd}}
: The directory where compiletest is run from. This may not be the root of the checkout, so you should avoid using it where possible.- Examples:
/path/to/rust
,/path/to/build/root
- Examples:
{{src-base}}
: The directory where the test is defined. This is equivalent to$DIR
for output normalization.- Example:
/path/to/rust/tests/ui/error-codes
- Example:
{{build-base}}
: The base directory where the test's output goes. This is equivalent to$TEST_BUILD_DIR
for output normalization.- Example:
/path/to/rust/build/x86_64-unknown-linux-gnu/test/ui
- Example:
{{rust-src-base}}
: The sysroot directory where libstd/libcore/... are located{{sysroot-base}}
: Path of the sysroot directory used to build the test.- Mainly intended for
ui-fulldeps
tests that run the compiler via API.
- Mainly intended for
{{target-linker}}
: Linker that would be passed to-Clinker
for this test, or blank if no linker override is active.- Mainly intended for
ui-fulldeps
tests that run the compiler via API.
- Mainly intended for
{{target}}
: The target the test is compiling for- Example:
x86_64-unknown-linux-gnu
- Example:
See
tests/ui/commandline-argfile.rs
for an example of a test that uses this substitution.
Adding a directive
One would add a new directive if there is a need to define some test property or behavior on an individual, test-by-test basis. A directive property serves as the directive's backing store (holds the command's current value) at runtime.
To add a new directive property:
- Look for the
pub struct TestProps
declaration insrc/tools/compiletest/src/header.rs
and add the new public property to the end of the declaration. - Look for the
impl TestProps
implementation block immediately following the struct declaration and initialize the new property to its default value.
Adding a new directive parser
When compiletest
encounters a test file, it parses the file a line at a time
by calling every parser defined in the Config
struct's implementation block,
also in src/tools/compiletest/src/header.rs
(note that the Config
struct's
declaration block is found in src/tools/compiletest/src/common.rs
).
TestProps
's load_from()
method will try passing the current line of text to
each parser, which, in turn typically checks to see if the line begins with a
particular commented (//@
) directive such as //@ must-compile-successfully
or //@ failure-status
. Whitespace after the comment marker is optional.
Parsers will override a given directive property's default value merely by being specified in the test file as a directive or by having a parameter value specified in the test file, depending on the directive.
Parsers defined in impl Config
are typically named parse_<directive-name>
(note kebab-case <directive-command>
transformed to snake-case
<directive_command>
). impl Config
also defines several 'low-level' parsers
which make it simple to parse common patterns like simple presence or not
(parse_name_directive()
), directive:parameter(s)
(parse_name_value_directive()
), optional parsing only if a particular cfg
attribute is defined (has_cfg_prefix()
) and many more. The low-level parsers
are found near the end of the impl Config
block; be sure to look through them
and their associated parsers immediately above to see how they are used to avoid
writing additional parsing code unnecessarily.
As a concrete example, here is the implementation for the
parse_failure_status()
parser, in src/tools/compiletest/src/header.rs
:
@@ -232,6 +232,7 @@ pub struct TestProps {
// customized normalization rules
pub normalize_stdout: Vec<(String, String)>,
pub normalize_stderr: Vec<(String, String)>,
+ pub failure_status: i32,
}
impl TestProps {
@@ -260,6 +261,7 @@ impl TestProps {
run_pass: false,
normalize_stdout: vec![],
normalize_stderr: vec![],
+ failure_status: 101,
}
}
@@ -383,6 +385,10 @@ impl TestProps {
if let Some(rule) = config.parse_custom_normalization(ln, "normalize-stderr") {
self.normalize_stderr.push(rule);
}
+
+ if let Some(code) = config.parse_failure_status(ln) {
+ self.failure_status = code;
+ }
});
for key in &["RUST_TEST_NOCAPTURE", "RUST_TEST_THREADS"] {
@@ -488,6 +494,13 @@ impl Config {
self.parse_name_directive(line, "pretty-compare-only")
}
+ fn parse_failure_status(&self, line: &str) -> Option<i32> {
+ match self.parse_name_value_directive(line, "failure-status") {
+ Some(code) => code.trim().parse::<i32>().ok(),
+ _ => None,
+ }
+ }
Implementing the behavior change
When a test invokes a particular directive, it is expected that some behavior
will change as a result. What behavior, obviously, will depend on the purpose of
the directive. In the case of failure-status
, the behavior that changes is
that compiletest
expects the failure code defined by the directive invoked in
the test, rather than the default value.
Although specific to failure-status
(as every directive will have a different
implementation in order to invoke behavior change) perhaps it is helpful to see
the behavior change implementation of one case, simply as an example. To
implement failure-status
, the check_correct_failure_status()
function found
in the TestCx
implementation block, located in
src/tools/compiletest/src/runtest.rs
, was modified as per below:
@@ -295,11 +295,14 @@ impl<'test> TestCx<'test> {
}
fn check_correct_failure_status(&self, proc_res: &ProcRes) {
- // The value the Rust runtime returns on failure
- const RUST_ERR: i32 = 101;
- if proc_res.status.code() != Some(RUST_ERR) {
+ let expected_status = Some(self.props.failure_status);
+ let received_status = proc_res.status.code();
+
+ if expected_status != received_status {
self.fatal_proc_rec(
- &format!("failure produced the wrong error: {}", proc_res.status),
+ &format!("Error: expected failure status ({:?}) but received status {:?}.",
+ expected_status,
+ received_status),
proc_res,
);
}
@@ -320,7 +323,6 @@ impl<'test> TestCx<'test> {
);
let proc_res = self.exec_compiled_test();
-
if !proc_res.status.success() {
self.fatal_proc_rec("test run failed!", &proc_res);
}
@@ -499,7 +501,6 @@ impl<'test> TestCx<'test> {
expected,
actual
);
- panic!();
}
}
Note the use of self.props.failure_status
to access the directive property. In
tests which do not specify the failure status directive,
self.props.failure_status
will evaluate to the default value of 101 at the
time of this writing. But for a test which specifies a directive of, for
example, //@ failure-status: 1
, self.props.failure_status
will evaluate to
1, as parse_failure_status()
will have overridden the TestProps
default
value, for that test specifically.