Closure Capture Inference
This section describes how rustc handles closures. Closures in Rust are
effectively "desugared" into structs that contain the values they use (or
references to the values they use) from their creator's stack frame. rustc has
the job of figuring out which values a closure uses and how, so it can decide
whether to capture a given variable by shared reference, mutable reference, or
by move. rustc also has to figure out which of the closure traits (Fn
,
FnMut
, or FnOnce
) a closure is capable of
implementing.
Let's start with a few examples:
Example 1
To start, let's take a look at how the closure in the following example is desugared:
fn closure(f: impl Fn()) { f(); } fn main() { let x: i32 = 10; closure(|| println!("Hi {}", x)); // The closure just reads x. println!("Value of x after return {}", x); }
Let's say the above is the content of a file called immut.rs
. If we compile
immut.rs
using the following command. The -Z dump-mir=all
flag will cause
rustc
to generate and dump the MIR to a directory called mir_dump
.
> rustc +stage1 immut.rs -Z dump-mir=all
After we run this command, we will see a newly generated directory in our
current working directory called mir_dump
, which will contain several files.
If we look at file rustc.main.-------.mir_map.0.mir
, we will find, among
other things, it also contains this line:
_4 = &_1;
_3 = [closure@immut.rs:7:13: 7:36] { x: move _4 };
Note that in the MIR examples in this chapter, _1
is x
.
Here in first line _4 = &_1;
, the mir_dump
tells us that x
was borrowed
as an immutable reference. This is what we would hope as our closure just
reads x
.
Example 2
Here is another example:
fn closure(mut f: impl FnMut()) { f(); } fn main() { let mut x: i32 = 10; closure(|| { x += 10; // The closure mutates the value of x println!("Hi {}", x) }); println!("Value of x after return {}", x); }
_4 = &mut _1;
_3 = [closure@mut.rs:7:13: 10:6] { x: move _4 };
This time along, in the line _4 = &mut _1;
, we see that the borrow is changed to mutable borrow.
Fair enough! The closure increments x
by 10.
Example 3
One more example:
fn closure(f: impl FnOnce()) { f(); } fn main() { let x = vec![21]; closure(|| { drop(x); // Makes x unusable after the fact. }); // println!("Value of x after return {:?}", x); }
_6 = [closure@move.rs:7:13: 9:6] { x: move _1 }; // bb16[3]: scope 1 at move.rs:7:13: 9:6
Here, x
is directly moved into the closure and the access to it will not be permitted after the
closure.
Inferences in the compiler
Now let's dive into rustc code and see how all these inferences are done by the compiler.
Let's start with defining a term that we will be using quite a bit in the rest of the discussion -
upvar. An upvar is a variable that is local to the function where the closure is defined. So,
in the above examples, x will be an upvar to the closure. They are also sometimes referred to as
the free variables meaning they are not bound to the context of the closure.
compiler/rustc_passes/src/upvars.rs
defines a query called upvars_mentioned
for this purpose.
Other than lazy invocation, one other thing that distinguishes a closure from a
normal function is that it can use the upvars. It borrows these upvars from its surrounding
context; therefore the compiler has to determine the upvar's borrow type. The compiler starts with
assigning an immutable borrow type and lowers the restriction (that is, changes it from
immutable to mutable to move) as needed, based on the usage. In the Example 1 above, the
closure only uses the variable for printing but does not modify it in any way and therefore, in the
mir_dump
, we find the borrow type for the upvar x
to be immutable. In example 2, however, the
closure modifies x
and increments it by some value. Because of this mutation, the compiler, which
started off assigning x
as an immutable reference type, has to adjust it as a mutable reference.
Likewise in the third example, the closure drops the vector and therefore this requires the variable
x
to be moved into the closure. Depending on the borrow kind, the closure has to implement the
appropriate trait: Fn
trait for immutable borrow, FnMut
for mutable borrow,
and FnOnce
for move semantics.
Most of the code related to the closure is in the
compiler/rustc_hir_typeck/src/upvar.rs
file and the data structures are
declared in the file compiler/rustc_middle/src/ty/mod.rs
.
Before we go any further, let's discuss how we can examine the flow of control through the rustc
codebase. For closures specifically, set the RUSTC_LOG
env variable as below and collect the
output in a file:
> RUSTC_LOG=rustc_hir_typeck::upvar rustc +stage1 -Z dump-mir=all \
<.rs file to compile> 2> <file where the output will be dumped>
This uses the stage1 compiler and enables debug!
logging for the
rustc_hir_typeck::upvar
module.
The other option is to step through the code using lldb or gdb.
rust-lldb build/host/stage1/bin/rustc test.rs
- In lldb:
b upvar.rs:134
// Setting the breakpoint on a certain line in the upvar.rs filer
// Run the program until it hits the breakpoint
Let's start with upvar.rs
. This file has something called
the euv::ExprUseVisitor
which walks the source of the closure and
invokes a callback for each upvar that is borrowed, mutated, or moved.
fn main() { let mut x = vec![21]; let _cl = || { let y = x[0]; // 1. x[0] += 1; // 2. }; }
In the above example, our visitor will be called twice, for the lines marked 1 and 2, once for a shared borrow and another one for a mutable borrow. It will also tell us what was borrowed.
The callbacks are defined by implementing the Delegate
trait. The
InferBorrowKind
type implements Delegate
and keeps a map that
records for each upvar which mode of capture was required. The modes of capture
can be ByValue
(moved) or ByRef
(borrowed). For ByRef
borrows, the possible
BorrowKind
s are ImmBorrow
, UniqueImmBorrow
, MutBorrow
as defined in the
compiler/rustc_middle/src/ty/mod.rs
.
Delegate
defines a few different methods (the different callbacks):
consume for move of a variable, borrow for a borrow of some kind
(shared or mutable), and mutate when we see an assignment of something.
All of these callbacks have a common argument cmt which stands for Category,
Mutability and Type and is defined in
compiler/rustc_hir_typeck/src/expr_use_visitor.rs
. Borrowing from the code
comments, "cmt
is a complete categorization of a value indicating where it
originated and how it is located, as well as the mutability of the memory in
which the value is stored". Based on the callback (consume, borrow etc.), we
will call the relevant adjust_upvar_borrow_kind_for_<something>
and pass the
cmt
along. Once the borrow type is adjusted, we store it in the table, which
basically says what borrows were made for each closure.
self.tables
.borrow_mut()
.upvar_capture_map
.extend(delegate.adjust_upvar_captures);